Synthesis and characterisation of a suite of four chiral pyridyl alcohols derived from (-)-menthol

Desmond Cunningham, ${ }^{b}$ Eva T. Gallagher, ${ }^{a}$ David H. Grayson,*a Patrick J. McArdle, \dagger^{\dagger}
Christina B. Storey ${ }^{a}$ and Deborah J. Wilcock ${ }^{a}$
${ }^{a}$ Centre for Synthesis and Chemical Biology, University Chemical Laboratory, Trinity College, Dublin 2, Ireland
${ }^{b}$ Department of Chemistry, University College, Galway, Ireland

Received (in Cambridge, UK) 18th June 2002, Accepted 26th September 2002
First published as an Advance Article on the web 4th November 2002

Reaction of menthylmagnesium chloride with pyridine-2-carbaldehyde gives a mixture of four isomeric chiral menthyl- and neomenthyl-substituted pyridylcarbinols which were fully characterised by a combination of spectroscopic and X-ray crystallographic methods. All of these alcohols catalyse the addition of diethylzinc to benzaldehyde, but with disappointing enantioselectivities.

Recently, much effort has been expended on the synthesis of chiral pyridylcarbinol derivatives with a view to their application as enantioselective catalysts or auxiliaries. A diversity of reactions are amenable to catalysis which involves the intervention of pyridylcarbinol ligands. These processes include, for example, the epoxidation of allylic alcohols, ${ }^{1}$ the conjugate addition of dialkylzinc reagents to α, β-unsaturated ketones ${ }^{2}$ and, especially, the nucleophilic addition of dialkylzinc reagents to aldehydes. ${ }^{3}$ The latter process is of particular interest in that a positive, non-linear relationship between the optical purity of the catalyst and that of the addition product is often observed. ${ }^{4}$

In this paper, we describe the synthesis from (- -menthol 1 of the suite of four chiral pyridyl alcohols 2a-2d. We chose the monoterpenoid $\mathbf{1}$ to provide the major element of asymmetry in the target molecules on the basis of its ready availability in both enantiomeric forms, and also in the expectation that incorporation of its equatorially trisubstituted cyclohexane ring into the alcohols $\mathbf{2 a}$ and $\mathbf{2 b}$ would restrict the conformational freedom of these compounds in a beneficial way when they were applied as chiral auxiliaries or as catalysts. ${ }^{5}$

(-)-Menthyl chloride 3 was obtained according to Huckel and Pietrzok's ${ }^{6}$ method by reacting (-)-menthol 1 with phosphorus pentachloride in the presence of a small amount of ferric chloride. The product contained variable but relatively small (generally $<10 \%$) amounts of its axial neomenthyl isomer 4. The derived Grignard reagent, prepared in tetrahydrofuran solution, reacted with pyridine-2-carbaldehyde to yield a mixture containing all four of the possible product alcohols 2a-2d.

The ratio of the equatorial "menthyl" alcohols $2 \mathbf{a}$ and $\mathbf{2 b}$ to the axial "neomenthyl" alcohols $2 \mathbf{c}$ and 2d that was obtained from this reaction was typically $2: 1$ even when a $32: 1$ mixture

[^0]of menthyl chloride $\mathbf{3}$ and neomenthyl chloride $\mathbf{4}$ was used to form the Grignard reagent. We discuss this observation in more detail below.

Unexpectedly, significant amounts of the equatorial ketone $\mathbf{5 a}$ and of the axial ketone $\mathbf{5 b}$ were also obtained as products of the reaction between menthylmagnesium chloride and pyridine2 -carbaldehyde. The formation of these ketones can reasonably be accounted for by invoking the Cannizzaro-like mechanism outlined in Scheme 1 where an initially formed chloro-

Scheme 1
magnesium alkoxide transfers a hydride ion to the strongly electrophilic pyridine-2-carbaldehyde.

The more basic alcohols $\mathbf{2 a}-\mathbf{2 d}$ could be easily separated from the ketones $\mathbf{5 a}$ and $\mathbf{5 b}$ via extraction into aqueous hydrochloric acid followed by later release from their salts. The
combined yield of the alcohols 2a-2d was 65%. Overlapping resonances made it impossible to obtain reliable ratios for these alcohols using ${ }^{1} \mathrm{H}$ NMR spectroscopy, but "integration" of the ${ }^{13} \mathrm{C}$ signals for their α-carbinyl carbon atoms suggested the relative proportions of $\mathbf{2 a}: \mathbf{2 b}: \mathbf{2 c}: \mathbf{2 d}$ to be $1.8: 2.3: 1: 1$. By careful chromatography over silica gel it was possible to obtain pure samples of each of these four alcohols.

The menthyl alcohol $(-)-(1 R)-\mathbf{2 a}$ was obtained as an oil which was laevorotatory in chloroform solution but dextrorotatory in ethanol, suggesting the possibility of intramolecular hydrogen bonding in the former solvent. Its methyl ether $\mathbf{6}$ was crystalline, enabling both the stereochemistry at $\mathrm{C}-1$ of the menthyl ring and the relative configuration of the secondary carbinol centre to be obtained by X-ray crystallographic analysis (Fig. 1). The absolute configurations of 6 and of

Fig. 1
compound 2c discussed below were not determined by X-ray analysis but follow from the known absolute configuration of the $(-)-(1 R, 3 R, 4 S)$-menthol 1 used for their synthesis.

6
The alcohol $2 \mathbf{2 a}$ could be obtained more conveniently by oxidation of the entire mixture of alcohols 2a-2d which was obtained from the Grignard reaction to give a mixture (76%) of (NMR) both the equatorial ketone $\mathbf{5 a}$ and the axial ketone $\mathbf{5 b}$. Base-catalysed equilibration of this mixture using potassium tert-butoxide in DMSO led to almost complete ($>20: 1$) formation of the thermodynamically more stable equatorial ketone 5a. Reduction of 5a in tetrahydrofuran solution using sodium borohydride or lithium aluminium hydride proceeded with relatively poor diastereoselectivity, but the more hindered reagent lithium tri-tert-butoxyaluminium hydride gave a $14: 1$ mixture of $\mathbf{2 a}$ and its oily anti-Cram (-)-($1 S$)-epimer $\mathbf{2 b}$ in 93% yield. These alcohols were readily separable by column chromatography.

The structure of $\mathbf{2 b}$ was confirmed by its oxidation to the menthyl ketone (-)-5a, easily identified from its NMR spectrum which exhibited a typical double triplet at $\delta 4.14 \mathrm{ppm}$ due to the axial proton on $\mathrm{C}-1$ of the menthyl ring.

The anti-Cram alcohol $\mathbf{2 b}$ could also be accessed via Mitsunobu inversion of the alcohol 2a. Thus, employing conditions recommended ${ }^{7}$ for the inversion of sterically hindered alcohols, the $(1 R)$-alcohol $\mathbf{2 a}$ was efficiently converted into the ($1 S$)-4-nitrobenzoate 7 which could then be hydrolysed to provide $\mathbf{2 b}$ in 69% overall yield from 2a.

7
X-Ray crystallography was used to reveal the (1S)configuration of the crystalline neomenthyl alcohol (-)-2c, mp $68{ }^{\circ} \mathrm{C}$, and clearly indicated that its hydroxy group did not engage in intramolecular hydrogen-bonding with the adjacent pyridyl nitrogen atom (Fig. 2).

Fig. 2
The epimeric anti-Cram alcohol (+)-2d was obtained as crystals, $\mathrm{mp} 33^{\circ} \mathrm{C}$, which were not suitable for X-ray analysis. However, this compound could be oxidised with chromic acid under two-phase conditions to give the neomenthyl ketone $(+)-\mathbf{5 b}$ which showed a characteristic narrow multiplet for its C-1 equatorial proton at $\delta 4.59 \mathrm{ppm}$ with $W_{1 / 2}=11.4 \mathrm{~Hz}$.

Appropriate 2D ${ }^{1} \mathrm{H}$ NMR experiments revealed the equatorial nature of $\mathrm{H}-1$ on the cyclohexyl ring for both of the neomenthyl systems $2 \mathbf{c}$ and $\mathbf{2 d}$, confirming that the bulky pyridylcarbinol substituent remains axial in each of these compounds.

The alcohols 2c and 2d have been claimed by Adolfsson et al. ${ }^{8}$ who obtained them by small-scale reaction of 2 lithiopyridine with neomenthyl carbonitrile $\mathbf{8}$ (synthesised from $(-)$-menthol $\mathbf{1}$), followed by reduction of the derived ketone $\mathbf{5 b}$ with sodium borohydride. However, these authors do not report either of the alcohols $\mathbf{2 c}$ or $\mathbf{2 d}$ as being crystalline. Furthermore, whilst the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data which we have recorded for 2 c and 2 d are generally in good agreement with that provided by Adolfsson et al., we have obtained a specific rotation for 2c which conflicts in both sign and magnitude with that reported by Adolfsson ${ }^{8}$ (see Experimental section). The configurations for the carbinol centres of $\mathbf{2 c}$ and $\mathbf{2 d}$ that were suggested by Adolfsson et al. relied on experiments with Mosher esters, and our crystallographic results are in agreement with these assignments.
The relative proportions of the equatorial alcohols $\mathbf{2 a}$ and $\mathbf{2 b}$ and of the axial alcohols 2 c and $\mathbf{2 d}$ which are formed by reaction of menthylmagnesium chloride with pyridine-2-

carbaldehyde are of interest in that a far greater proportion of the product mixture than would be expected consists of the neomenthyl derivatives 2 c and 2 d . Indeed, since neomenthyl chloride 4 readily undergoes base-catalysed trans-diaxial elimination of hydrogen chloride to yield menthenes, the total absence of the neomenthyl compounds $\mathbf{2 c}$ and 2 d from the reaction mixture would not have been surprising.

It has been reported ${ }^{9}$ that menthylmagnesium chloride reacts with carbon dioxide to give exclusively the equatorial carboxylic acid 9 . We have confirmed this result, obtaining unrecrystallised acid 9 in 88% yield and in >100:1 ratio with the epimeric neomenthyl acid $\mathbf{1 0}$. The possibility that dynamic interconversion of menthyl- and neomenthylmagnesium chlorides takes place in solution cannot be ruled out as an explanation for the ratio of axial to equatorial products $\mathbf{2 a}-\mathbf{2 d}$ which we have observed for the reaction with pyridine-2-carbaldehyde, but the result of the carbonation experiment suggests that this does not occur. ${ }^{10}$ It seems more likely that the menthyl ketone 5a, formed (vide supra) as a secondary product when the Grignard reagent derived from menthyl chloride 3 is reacted with pyridine-2 carbaldehyde, subsequently equilibrates with its neomenthyl isomer $\mathbf{5 b}$, and that this latter ketone then enters into an Oppenauer-like redox equilibrium with the menthyl-configured chloromagnesium alkoxides which are the primary products of the reaction. This can then lead to the mixture of equatorial $\mathbf{2 a}+\mathbf{2 b}$ and axial $\mathbf{2 c}+\mathbf{2 d}$ products which is obtained

9β-bond
10α-bond
We briefly investigated a number of alternative routes to the alcohols 2a-2d and to the ketones 5a-5b. Thus, one-pot Barbier reaction ${ }^{11}$ between (-)-menthyl chloride 3 and pyridine-2 carbaldehyde in the presence of lithium metal gave modest amounts of the alcohols 2a-2d. Reaction of menthylmagnesium chloride with pyridine-2-carbonitrile was more successful, yielding a mixture containing the imine $\mathbf{1 1}$ which was hydrolysed using concentrated aqueous hydrochloric acid to give exclusively the menthyl ketone 5a. By contrast with the facile base-catalysed isomerisation described above, prolonged treatment with strong acid does not epimerise the axial neomenthyl ketone $\mathbf{5 b}$ to its equatorial isomer $\mathbf{5 a}$, and we therefore conclude that the only imine formed as a product of the Grignard reaction is the equatorial isomer $\mathbf{1 1}$.

It was clear, however, that only a part of the product mixture that was obtained via reaction of menthylmagnesium chloride with pyridine-2-carbonitrile had been successfully hydrolysed by aqueous hydrochloric acid. Careful chromatography of the remaining material, or of a sample of the crude product mixture obtained from the Grignard reaction, led to the isolation of a fraction that was identified as being the novel amidine $\mathbf{1 2}$ This exhibited spectroscopic data that clearly established its gross structure and confirmed that it was not the isomeric compound 13. The amidine $\mathbf{1 2}$ was resistant to acid-catalysed hydrolysis, being recovered unchanged after boiling with concentrated hydrochloric acid. We rationalise the formation of $\mathbf{1 2}$ as outlined in Scheme 2, but are unable to confidently assign a

Table 1 Enantioselective addition of diethylizinc to benzaldehyde catalysed by the alcohols $\mathbf{2 a} \mathbf{- 2 d}$

Catalyst	Yield of $\mathbf{1 4}(\%)$	Configuration	$[\alpha]_{\mathrm{D}}$	Ee (\%)
$\mathbf{2 a}$	96	(R)	+5.5	12.12
$\mathbf{2 b}$	80	(R)	+4.0	8.8
$\mathbf{2 c}$	94	(R)	+10.2	22.5
$\mathbf{2 d}$	84	(R)	+4.0	8.8

11

12

13

Scheme 2
configuration to the double bond which is exocyclic to the menthyl ring.

Each of the pyridyl alcohols 2a-2d proved to be an active catalyst for the enantioselective addition of diethylzinc to benzaldehyde to give optically active 2-phenylpropanol (Table 1). The results obtained were somewhat disappointing in terms of the ee values of the phenylpropanol $\mathbf{1 4}$ produced, but it is noteworthy that the (R)-alcohol was always favoured, regardless of the configuration at $\mathrm{C}-1$ of the catalyst that was employed.

14

Further applications of the alcohols $\mathbf{2 a} \mathbf{- 2 d}$ and of their methyl ethers are under investigation.

Experimental

${ }^{1} \mathrm{H}$ NMR spectra were recorded for solutions in CDCl_{3} using Bruker MSL-300 or Bruker AVANCE DPX-400 spectrometers. J values are given in Hz. Assignments were verified by appropriate $\mathrm{H}-\mathrm{H}$ COSY, $\mathrm{C}-\mathrm{H}$ COSY and ${ }^{13} \mathrm{C}$-DEPT experiments. IR spectra were recorded for Nujol mulls (N) or for liquid films (L) between sodium chloride plates using Perkin Elmer 883 or Paragon-FT spectrometers. High-resolution mass spectra were obtained using a VG Alto Spec instrument. Melting points (uncorrected) were measured in unsealed capillary tubes using a Stuart Scientific SMP2 digital apparatus. Optical rotations were measured for solutions in a 1 dm cell using a Perkin-Elmer 141 polarimeter; specific optical rotations are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Thin layer chromatography was carried out using Merck Kieselgel $60 \mathrm{~F}_{254} 0.2 \mathrm{~mm}$ silica gel plates. Column chromatography was carried out using Merck Keiselgel 60 (70-230 mesh) silica gel. All solvents were distilled before use The (-)-menthol 2 used in this work had $[a]_{\mathrm{D}}-51.3$ (c 2.38 in EtOH).

Crystal data for 2c

$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}, M=247.37$. Monoclinic, $a=10.460(2), b=$ $5.5610(4), c=13.412(2) \AA, a=90^{\circ}, \beta=110.951(7)^{\circ}, \gamma=90^{\circ}, V=$ $728.5(2) \AA^{3}$, space group $P 2_{1}, Z=2, D$ (calculated) $=1.128 \mathrm{~g}$ cm^{3}, crystal dimensions $0.5 \times 0.5 \times 0.15 \mathrm{~mm}$.

Data collection and processing. Enraf-Nonius CAD-4 diffractometer, temperature 293(2) K, wavelength $0.71703 \AA$, absorption coefficient $0.069 \mathrm{~mm}^{-1}$, theta range for data collection 1.64 to $25.21^{\circ}, 1476$ reflections collected, index ranges $-12 \leq h \leq 11 ; 0 \leq k \leq 6 ; 0 \leq l \leq 14,1413$ independent reflections $[R($ int $)=0.0392]$.

Structure analysis and refinement. The structure was solved by direct methods, SHELXS-86, ${ }^{12}$ and refined to a final R value of 0.0540 for $I>2 \sigma(I)$ by full matrix least squares analysis on $|F|^{2}$ (236 parameters) using SHELXL-93. ${ }^{13}$ All the nonhydrogen atoms were refined anisotropically. The hydrogens, with the exception of the hydroxy hydrogen which was located from the difference map, were fixed geometrically and those in similar environments were given common temperature factors ($\mathrm{CH} 0.03651, \mathrm{CH}_{2} 0.3295, \mathrm{CH}_{3} 0.07375$). The hydroxy hydrogen was isotropically refined with an independent temperature factor. All calculations were carried out using a VAX-1 mainframe computer. Figures were drawn using SCHAKAL. ${ }^{14}$

Crystal data for 6

$\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}, M=261.40$. Orthorhombic, $a=10.8957(1), b=$ $11.2627(9), c=13.3035(1) \AA, V=1632.5(2) \AA^{3}$, space group $P 2_{1} 2_{1} 2_{1}, Z=4, D$ (calculated) $=1.064 \mathrm{~g} \mathrm{~cm}^{3}$, crystal dimensions $0.5 \times 0.5 \times 0.5 \mathrm{~mm}$.

Data collection and processing. Enraf-Nonius CAD-4 diffractometer, temperature 293(2) K, wavelength 0.71069 Å, absorption coefficient $0.065 \mathrm{~mm}^{-1}$, theta range for data collection 2.37 to $25.96^{\circ}, 1904$ reflections collected, index ranges $0 \leq h \leq 13 ; 0 \leq k \leq 13 ; 0 \leq l \leq 1838$ independent reflections $[R(\mathrm{int})=0.0168], 1523$ reflections observed $(>2 \sigma)$.

Structure analysis and refinement. The structure was solved by direct methods, SHELXS-86, ${ }^{12}$ and refined by full matrix least squares analysis using SHELXL-93. ${ }^{13}$ Data were corrected for Lorentz and polarisation effects but not for absorption. Hydrogen atoms were included in calculated positions with thermal parameters 30% larger than the atom to which they
were attached. The non-hydrogen atoms were refined anisotropically. Final R indices $[I>2 \sigma(I)]$ were $R_{1}=0.0350$ and $w R_{2}=0.1081$. All calculations were performed on a Silicon Graphics R4000 computer. The ORTEX program was used to obtain the drawings. ${ }^{15}$

Additional data available for structures 2c and $\mathbf{6}$ includes tables of atomic coordinates and of bond lengths and angles (CCDC reference numbers 186677 and 186678, respectively). See http://www.rsc.org/suppdata/p1/b2/b205872n/ for these files in electronic format.

(-)-(1R,3R,4S)-3-Chloro-4-isopropyl-1-methylcyclohexane $\mathbf{3}^{6}$

A mixture of phosphorus pentachloride (40 g) and anhydrous ferric chloride (1.0 g) suspended in hexane $\left(55 \mathrm{~cm}^{3}\right)$ was stirred vigorously at $0^{\circ} \mathrm{C}$. A solution of (-)-menthol $2(30 \mathrm{~g})$ in hexane $\left(75 \mathrm{~cm}^{3}\right)$ was added dropwise during 40 min . After a further 90 min , ice was added to quench the reaction. The hexane extract was washed with water and with aqueous sodium hydrogen carbonate solution, dried over anhydrous magnesium sulfate, and evaporated to yield the derived chlorides 3 and $\mathbf{4}$ $(30.3 \mathrm{~g})$ which were distilled at reduced pressure, bp $94-96^{\circ} \mathrm{C} / 15$ $\mathrm{mmHg},[a]_{\mathrm{D}}-44$ (c 14.12 in MeOH). ${ }^{1} \mathrm{H}$ NMR analysis by integration of the signals for the axial and equatorial protons on C-3 indicated a menthyl : neomenthyl ratio of $93: 7 . \delta_{\mathrm{H}}$ (400 MHz) $0.70(3 \mathrm{H}, \mathrm{d}, J 6.8), 0.86(6 \mathrm{H}, \mathrm{d}, J 6.3), 0.9(2 \mathrm{H}, \mathrm{m}), 1.4$ $(2 \mathrm{H}, \mathrm{m}), 1.65(2 \mathrm{H}, \mathrm{m}), 1.80(1 \mathrm{H}, \mathrm{m}), 2.19(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{m})$ and $3.77(0.93 \mathrm{H}$, apparent $\mathrm{dt}, J 11.0,11.0$ and 4.2$)$ and 4.44 $(0.07 \mathrm{H}, \mathrm{m}) \mathrm{ppm} ; \delta_{\mathrm{C}} 15.1\left(\mathrm{CH}_{3}\right), 20.95\left(\mathrm{CH}_{3}\right), 21.88\left(\mathrm{CH}_{3}\right)$, $24.23\left(\mathrm{CH}_{2}\right), 27.09(\mathrm{CH}), 33.34(\mathrm{CH}), 34.21\left(\mathrm{CH}_{2}\right), 46.71\left(\mathrm{CH}_{2}\right)$, $50.40(\mathrm{CH})$ and $63.81(\mathrm{CH}) \mathrm{ppm}$.
Occasionally, menthyl : neomenthyl ratios up to $87: 13$ were observed, but this did not affect the stereochemical outcome of any later reactions.

Menthylmagnesium chloride

Magnesium turnings (5.56 g) were covered by dry THF and stirred vigorously under an atmosphere of nitrogen. A small crystal of iodine and/or one drop of 1,2-dibromoethane were added, followed by freshly-distilled menthyl chloride 3 (12 g) which had previously been dried over anhydrous sodium carbonate to remove traces of hydrogen chloride. The mixture was heated to induce reaction, and further menthyl chloride (28 g) in THF ($200 \mathrm{~cm}^{3}$) was added at such a rate that the solution continued to reflux. Further THF was added when the reaction was complete in order to adjust the Grignard reagent concentration to $c a .0 .5 \mathrm{M}$. Solutions of reagent were assayed by titration in the usual way

Reaction of menthylmagnesium chloride with pyridine-2carbaldehyde: formation of the ketones $5 a$ and 5 b , and of the alcohols 2a-2d

Freshly distilled pyridine-2-carbaldehyde (15.33 g) was added slowly to an ice-cold solution of menthylmagnesium chloride in tetrahydrofuran ($0.53 \mathrm{M} ; 270 \mathrm{~cm}^{3}$). The mixture was allowed to reach room temperature and then refluxed during 12 h , after which time the reaction mixture was cooled and quenched with water. Extraction with ether yielded a crude oily product (36 g). This was dissolved in ether and shaken with 1 M HCl , and the organic layer was washed with water, dried over magnesium sulfate, and evaporated to give a mixture (9 g) containing hydrocarbons (NMR suggested the presence of bimenthyls) together with a $3: 1$ mixture of the ketones $\mathbf{5 a}$ and $\mathbf{5 b}$. The acidic aqueous layer was then basified using sodium carbonate and extracted with ether. The ethereal extract was dried over anhydrous potassium carbonate and evaporated to yield a mixture (23 g) of the isomeric alcohols $\mathbf{2 a}-2 \mathbf{d}$. The latter were separated by chromatography on silica gel using an ethyl acetate : hexane gradient as eluant. The alcohols were eluted in the order 2d, 2b, 2a and $\mathbf{2 c}$.
(-)-(R)-[(1'R,2'S,5'R)-2'-Isopropyl-5'-methylcyclohexyl]($\mathbf{2}^{\prime \prime}$-pyridyl)methanol 2a. Obtained as an oil which had $[a]_{\mathrm{D}}$ -12.5 (c. 3.10 in CHCl_{3}) or $[a]_{\mathrm{D}}+14.6$ (c 1.30 in EtOH); $v_{\text {max }}($ L) $3406,3063,3012,2953,2917,2869,1592,1570,1471$, 1454, 1434, 1409, 1385, 1367, 1347, 1308, 1263, 1237, 1211, $1180,1149,1115,1097,1040,1014,993,982,967,913,876,849$, $812,806,777,762,750,734,678,668,646$ and $621 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.13$ $(1 \mathrm{H}$, apparent q, $J 12.3), 0.55(1 \mathrm{H}, \mathrm{m}), 0.66(3 \mathrm{H}, \mathrm{d}, J 6.8), 0.69$ ($3 \mathrm{H}, \mathrm{d}, J 6.7$), $0.84(3 \mathrm{H}, \mathrm{d}, J 6.8), 0.8-1.1(2 \mathrm{H}$, overlapping $\mathrm{ms}), 1.21(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.54(2 \mathrm{H}, \mathrm{m}), 1.79(2 \mathrm{H}, \mathrm{m}), 2.16(1 \mathrm{H}, \mathrm{m}$, $\left.-\mathrm{C} H \mathrm{Me}_{2}\right), 4.85\left(1 \mathrm{H}\right.$, br s, exch. $\left.\mathrm{D}_{2} \mathrm{O},-\mathrm{OH}\right), 4.90(1 \mathrm{H}, \mathrm{s}$, $-\mathrm{CHOH}), 7.04-7.10\left(2 \mathrm{H}\right.$, overlapping ms, $H-3^{\prime}$ and $\left.H-5^{\prime}\right)$, 7.54 $\left(1 \mathrm{H}, \mathrm{dt}, J 7.9\right.$ and $\left.1.7, H-4^{\prime}\right)$ and $8.41(1 \mathrm{H}, \mathrm{dd}, J 4.8$ and 0.9 , $\left.H-6^{\prime}\right)$ ppm; $\delta_{\mathrm{C}} 15.22\left(\mathrm{CH}_{3}\right), 21.39\left(\mathrm{CH}_{3}\right), 22.59\left(\mathrm{CH}_{3}\right), 24.21$ $\left(\mathrm{CH}_{2}\right), 26.73(\mathrm{CH}), 26.84(\mathrm{CH}), 32.59(\mathrm{CH}), 34.88\left(\mathrm{CH}_{2}\right), 35.87$ $\left(\mathrm{CH}_{2}\right), 43.37(\mathrm{CH}), 46.25(\mathrm{CH}), 72.02(-\mathrm{CHOH}), 120.96(\mathrm{CH})$, $121.98(\mathrm{CH}), 135.97(\mathrm{CH}), 147.67(\mathrm{CH})$ and 160.08 (quat) ppm. HRMS (EI) m / z 247.1944. Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}$ 247.1936.
(-)-(S)-[(1'R,2'S,5'R)-2'-Isopropyl-5'-methylcyclohexyl]-(2"-pyridyl)methanol 2b. Obtained as an oil which had $[a]_{\mathrm{D}}-25$ (c 1.16 in CHCl_{3}); $v_{\text {max }}(\mathrm{L}) 3425,2955,2919,2869,1594,1570$, 1467, 1436, 1406, 1386, 1368, 1345, 1308, 1261, 1179, 1149 , 1112, 1095, 1065, 1036, 900, 872, 841, 804, 779, 762, 748 and $679 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.7-1.2$ (5 H , overlapping ms), 0.73 ($3 \mathrm{H}, \mathrm{d}, J 6.4$), $0.91(3 \mathrm{H}, \mathrm{d}, J 6.8), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.8), 1.5-1.8(4 \mathrm{H}$, overlapping $\mathrm{ms}), 2.37\left(1 \mathrm{H}, \mathrm{m},-\mathrm{C} H \mathrm{Me}_{2}\right), 4.56\left(1 \mathrm{H}\right.$, br s, exch. $\left.\mathrm{D}_{2} \mathrm{O},-\mathrm{OH}\right)$, $5.07(1 \mathrm{H}, \mathrm{s},-\mathrm{CHOH}), 7.16-7.21\left(2 \mathrm{H}\right.$, overlapping ms, $H-3^{\prime}$ and $\left.H-5^{\prime}\right), 7.68\left(1 \mathrm{H}, \mathrm{dt}, J 7.9\right.$ and $\left.1.7, H-4^{\prime}\right)$ and $8.53(1 \mathrm{H}, \mathrm{dd}, J 4.6$ and 1.5, H-6') ppm; $\delta_{\mathrm{C}} 15.58\left(\mathrm{CH}_{3}\right), 21.59\left(\mathrm{CH}_{3}\right), 22.72\left(\mathrm{CH}_{3}\right)$, $24.32\left(\mathrm{CH}_{2}\right), 26.37(\mathrm{CH}), 32.55(\mathrm{CH}), 32.79\left(\mathrm{CH}_{2}\right), 35.08\left(\mathrm{CH}_{2}\right)$, $43.01(\mathrm{CH}), 45.87(\mathrm{CH}), 70.47(-\mathrm{CHOH}), 120.0(\mathrm{CH}), 121.77$ $(\mathrm{CH}), 136.52(\mathrm{CH}), 147.6(\mathrm{CH})$ and 161.7 (quat) ppm. HRMS (EI) m / z 247.1922. Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO} 247.1936$
(-)-(S)-[1'S,2'S,5'R)-2'-Isopropyl-5'-methylcyclohexyl]($\mathbf{2}^{\prime \prime}$-pyridyl)methanol 2c. Obtained as plates, mp $68^{\circ} \mathrm{C}$ (pentane) which had $[a]_{\mathrm{D}}-42\left(c 1.08\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ or $[a]_{\mathrm{D}}-20(c 0.24$ in $\mathrm{EtOH})\left\{\right.$ lit. ${ }^{8}$ an oil, $[a]_{\mathrm{D}}+5.3(c 0.79$ in EtOH) $\} ; v_{\text {max }}(\mathrm{N}) 3277$, 3055, 3021, 2928, 2865, 1594, 1573, 1456, 1436, 1378, 1366, 1343, 1284, 1258, 1242, 1216, 1170, 1150, 1092, 1044, 1028, 1013, 1001, 990, 960, 935, 916, 892, 866, 806, 786, 751, 723, 678 and $625 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.64(3 \mathrm{H}, \mathrm{d}, J 7.9), 0.75-1.15(4 \mathrm{H}$, overlapping $\mathrm{ms}), 0.90(3 \mathrm{H}, \mathrm{d}, J 6.4), 1.02(3 \mathrm{H}, \mathrm{d}, J 6.4), 1.48(2 \mathrm{H}, \mathrm{m}$, including -CHMe), $1.79(2 \mathrm{H}, \mathrm{m}), 2.07\left(1 \mathrm{H}, \mathrm{m},-\mathrm{C} H \mathrm{Me}_{2}\right), 2.35(1 \mathrm{H}, \mathrm{m}$, $H-1), 3.40\left(1 \mathrm{H}\right.$, br s, exch. $\left.\mathrm{D}_{2} \mathrm{O},-\mathrm{OH}\right), 4.94(1 \mathrm{H}, \mathrm{d}, J 8.8$, $-\mathrm{CHOH}), 7.15\left(1 \mathrm{H}, \mathrm{m}, H^{\prime} 5^{\prime}\right), 7.24\left(1 \mathrm{H}, \mathrm{d}, J 8.1, H-3^{\prime}\right), 7.61$ $\left(1 \mathrm{H}, \mathrm{dt}, J 7.7\right.$ and $\left.1.8, H-4^{\prime}\right)$ and $8.50(1 \mathrm{H}, \mathrm{dd}, J 4.2$ and 0.9 , $\left.H-6^{\prime}\right) \mathrm{ppm} ; \delta_{\mathrm{C}} 22.22\left(\mathrm{CH}_{3}\right), 22.48\left(\mathrm{CH}_{3}\right), 22.68\left(\mathrm{CH}_{3}\right), 24.97$ $\left(\mathrm{CH}_{2}\right), 27.05(\mathrm{CH}), 29.98(\mathrm{CH}), 36.01\left(\mathrm{CH}_{2}\right), 39.09\left(\mathrm{CH}_{2}\right), 42.34$ $(\mathrm{CH}), 49.90(\mathrm{CH}), 74.63(-\mathrm{CHOH}), 121.68(\mathrm{CH}), 122.25(\mathrm{CH})$, $136.13(\mathrm{CH}), 148.85(\mathrm{CH})$ and 163.38 (quat) ppm [Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}$: C 77.73, H 10.12, N 5.67 ; found $\mathrm{C} 77.69, \mathrm{H}$ 10.40, H 5.63\%].

(+)-(R)-[1'S,2'S,5'R)-2'-Isopropyl-5'-methylcyclohexyl]-

($\mathbf{2}^{\prime \prime}$-pyridyl)methanol 2d. Obtained as needles, $\mathrm{mp} 33^{\circ} \mathrm{C}$ (chloroform) which had $[a]_{\mathrm{D}}+30.5\left(c 1.51\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ or $[a]_{\mathrm{D}}+30(c 0.8$ in EtOH) $\left\{l i t .{ }^{8}\right.$ an oil, $[a]_{\mathrm{D}}+10(c 0.8$ in EtOH$\left.)\right\} ; v_{\text {max }}(\mathrm{N}) 3396$, 2954, 2923, 2853, 1594, 1570, 1456, 1407, 1377, 1260, 1225, $1148,1101,1062,1028,865,800,748,724$ and $668 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.68$ $(3 \mathrm{H}, \mathrm{d}, J 6.6), 0.7-1.2$ (5 H , overlapping ms), $0.99(3 \mathrm{H}, \mathrm{d}, J 6.4)$, $1.01(3 \mathrm{H}, \mathrm{d}, J 6.4), 1.7-1.9(3 \mathrm{H}$, overlapping ms), $1.95(1 \mathrm{H}, \mathrm{m}$, $\left.-\mathrm{C} H \mathrm{Me}_{2}\right), 2.17(1 \mathrm{H}, \mathrm{m}, H-1), 4.5\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, exch. $\left.\mathrm{D}_{2} \mathrm{O},-\mathrm{OH}\right)$, $5.09(1 \mathrm{H}, \mathrm{d}, J 2.2,-\mathrm{CHOH}), 7.18\left(1 \mathrm{H}, \mathrm{m}, H-5^{\prime}\right), 7.21(1 \mathrm{H}, \mathrm{d}$, $\left.J 7.9, H-3^{\prime}\right), 7.64\left(1 \mathrm{H}, \mathrm{dt}, J 7.9\right.$ and $\left.1.8, H-4^{\prime}\right)$ and $8.53(1 \mathrm{H}, \mathrm{d}$, J 4.8, H-6') ppm; $\delta_{\mathrm{C}} 21.58\left(\mathrm{CH}_{3}\right), 21.74\left(\mathrm{CH}_{3}\right), 23.39\left(\mathrm{CH}_{3}\right)$, $26.27\left(\mathrm{CH}_{2}\right), 28.12(\mathrm{CH}), 29.36(\mathrm{CH}), 35.78\left(\mathrm{CH}_{2}\right), 35.95\left(\mathrm{CH}_{2}\right)$, $40.88(\mathrm{CH}), 47.83(\mathrm{CH}), 72.87(-\mathrm{CHOH}), 120.24(\mathrm{CH}), 121.74$
$(\mathrm{CH}), 136.47(\mathrm{CH}), 147.55(\mathrm{CH})$ and 162.68 (quat) ppm. HRMS (EI) m / z 247.1919. Calculated for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO} 247.1936$.

(-)-[(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl] 2'-pyridyl ketone 5 a and (+)-[($1 S, 2 S, 5 R$)-2-isopropyl-5-methylcyclohexyl] $\mathbf{2}^{\prime}$-pyridyl ketone 5 b via oxidation of a mixture of the alcohols

 2a-2dA mixture of the crude alcohols 2a-2d (6 g), obtained as described above, was dissolved in ether $\left(60 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. A solution of sodium dichromate dihydrate (4.2 g) in water $\left(60 \mathrm{~cm}^{3}\right)$ containing sulfuric acid $\left(2.9 \mathrm{~cm}^{3}\right)$ was added dropwise with stirring and the resulting mixture was stirred during a further 12 h . Ethanol $\left(10 \mathrm{~cm}^{3}\right)$ was added to break down the sticky chromium complexes which had formed, and the reaction mixture was extracted with ether. The ethereal extract was washed, dried, and evaporated to give (NMR) an oily $3: 1$ mixture of the ketones $\mathbf{5 a}$ and $\mathbf{5 b}(4.5 \mathrm{~g} ; 76 \%)$, bp $165^{\circ} \mathrm{C}$ at 0.5 mmHg .

(-)-[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] 2'-pyridyl ketone 5 a via base-catalysed isomerisation of a mixture of 5 a and 5b

A 3:1 mixture of the ketones $\mathbf{5 a}$ and $\mathbf{5 b}(1.4 \mathrm{~g})$ was dissolved under nitrogen in DMSO ($13 \mathrm{~cm}^{3}$) with a catalytic amount of potassium tert-butoxide (50 mg). The mixture was stirred during 12 h and then diluted with water and extracted with ether. The extract was dried over magnesium sulfate and evaporated to give an oil $(1.3 \mathrm{~g})$ which (NMR) was a $20: 1$ mixture of 5 a and $\mathbf{5 b}$.
(-)-[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] 2'-pyridyl ketone 5 a and $N-\left[\left(2^{\prime} \boldsymbol{S}, 5^{\prime} R\right)\right.$-2'-isopropyl- $\mathbf{5}^{\prime}$-methylcyclohex- $\mathbf{2}^{\prime}$ enylidene($2^{\prime \prime}$-pyridyl)methyl]pyridine-2-carboxamidine 12 via reaction of menthylmagnesium chloride with pyridine-2-carbonitrile

Pyridine-2-carbonitrile (2.73 g) was added to a solution of menthylmagnesium chloride in THF ($1.03 \mathrm{M} ; 25 \mathrm{~cm}^{3}$). After the exothermic reaction had subsided, the mixture was refluxed during 8 h , cooled and poured onto ice. Extraction using ether gave a thick brown oil (2.8 g) from which hydrocarbons (menthenes, bimenthyls) were removed by vacuum distillation to leave a non-volatile residue (1.9 g). This (NMR) did not contain any of the ketones $\mathbf{5 a}$ or $\mathbf{5 b}$.
A part of this residue was stirred with dilute hydrochloric acid and then extracted with ether to give an oil which now (NMR, IR) consisted partly of the ketone 5a. This was isolated by distillation; it had bp $135^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg} ;[a]_{\mathrm{D}}-48.27$ (c 0.959 in CHCl_{3}); $v_{\text {max }}(\mathrm{L}) 3053,2953,2921,2869,1690,1583,1568$, 1508, 1456, 1435, 1385, 1368, 1338, 1294, 1273, 1237, 1208, 1183, 1137, 1088, 1044, 1016, 995, 974, 928, 866, 818, 802, 744, $702,685,668$ and $618 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.68(3 \mathrm{H}, \mathrm{d}, J 6.9), 0.7-1.2(3 \mathrm{H}$, overlapping ms), $0.84(3 \mathrm{H}, \mathrm{d}, J 6.9), 0.86(3 \mathrm{H}, \mathrm{d}, J 6.6), 1.4-1.8$ $(6 \mathrm{H}$, overlapping ms), $4.14(1 \mathrm{H}$, apparent dt, $J 11.2,11.2$ and 3.4, - $\mathrm{CHC}=\mathrm{O}$), 7.41 (1 H , ddd, $J 6.5,4.8$ and 1.3, $H-5^{\prime}$), 7.80 $\left(1 \mathrm{H}, \mathrm{dt}, J 7.9\right.$ and $\left.1.8, H-4^{\prime}\right), 8.03\left(1 \mathrm{H}, \mathrm{d}, J 7,9, H-3^{\prime}\right)$ and 8.68 (1 H , dd, $J 4.8$ and $\left.1.0, H-6^{\prime}\right) \mathrm{ppm} ; \delta_{\mathrm{C}} 16.51\left(\mathrm{CH}_{3}\right), 21.45\left(\mathrm{CH}_{3}\right)$, $22.36\left(\mathrm{CH}_{3}\right), 24.22\left(\mathrm{CH}_{2}\right), 29.12(\mathrm{CH}), 32.40(\mathrm{CH}), 34.72\left(\mathrm{CH}_{2}\right)$, $39.33\left(\mathrm{CH}_{2}\right), 44.17(\mathrm{CH}), 45.87(\mathrm{CH}), 122.2(\mathrm{CH}), 126.9(\mathrm{CH})$, $136.8(\mathrm{CH}), 148.9$ (quat) and $205.9(\mathrm{C}=\mathrm{O}) \mathrm{ppm}$ [Calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}$: C 78.37, H 9.39, N 5.71 ; found C 78.65, H 9.63, N 5.67\%].

A further portion (1.3 g) of the non-volatile residue obtained as described above was subjected to chromatography on silica gel using 10% ethyl acetate : 85% hexane : 5% triethylamine as eluant to give the following fractions: (a) the menthyl ketone 5a ($150 \mathrm{mg} ; 11.5 \%$), (b) a fraction ($143 \mathrm{mg} ; 11 \%$) containing several components which yielded the ketone 5a on treatment with hydrochloric acid, and (c) the oily amidine $12(260 \mathrm{mg}$; 20%) which was unaffected by treatment with hydrochloric acid
and which had $v_{\max }(\mathrm{L}) 3460,3378,3056,2955,2927,2867,1739$, 1640, 1586, 1566, 1508, 1469, 1442, 1426, 1374, 1242, 1169, 1147, 1112, 1091, 1047, 997, 979, 958, 938, 921, 884, 847, 802, $792,748,695$ and $668 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 0.77(6 \mathrm{H}$, overlapping ds, $2 \times$ Me groups), $0.86(2 \mathrm{H}, \mathrm{m}), 1.04$ ($3 \mathrm{H}, \mathrm{d}, J 7.0$, Me group), $1.18(2 \mathrm{H}, \mathrm{m}), 1.57-2.10(4 \mathrm{H}$, overlapping ms), $2.48(1 \mathrm{H}$, d, J 12.7), $6.29\left(2 \mathrm{H}\right.$, br s, exch. $\left.\mathrm{D}_{2} 0,-\mathrm{N} H_{2}\right), 7.10(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 4.6, $\left.5^{\prime}-H\right), 7.27\left(1 \mathrm{H}, \mathrm{dd}, J 7.5\right.$ and $\left.4.7,5^{\prime \prime}-H\right), 7.48(1 \mathrm{H}, \mathrm{d}$, $\left.J 7.3,3^{\prime}-H\right), 7.59(1 \mathrm{H}, \mathrm{dt}, J 7.4,7.4$ and 1.3, 4'-H), $7.71(1, \mathrm{dt}$, $J 7.5,7.5$ and $\left.1.8,4^{\prime \prime}-H\right), 8.34\left(1 \mathrm{H}\right.$, dd, $J 7.9$ and $\left.1.1,3^{\prime \prime}-H\right)$, $8.46\left(1 \mathrm{H}, \mathrm{dd}, J 4.6\right.$ and $\left.0.9,6^{\prime \prime}-H\right)$ and $8.54(1 \mathrm{H}, \mathrm{dd}, J 4.7$ and $\left.0.9,6^{\prime}-H\right) \mathrm{ppm} ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 18.47\left(\mathrm{CH}_{3}\right), 20.82\left(\mathrm{CH}_{3}\right), 21.71$ $\left(\mathrm{CH}_{3}\right), 23.95\left(\mathrm{CH}_{2}\right), 26.60(\mathrm{CH}), 26.84\left(\mathrm{CH}_{2}\right), 29.70(\mathrm{CH}), 30.20$ $\left(\mathrm{CH}_{2}\right), 44.15(\mathrm{CH}), 121.40$ and $121.60(\mathrm{CH}), 124.59$ and 124.87 (CH), 126.87 (quat.), 136.03 (CH), 136.43 (CH), 136.75 (quat.), 139.82 (quat.), $147.65(\mathrm{CH}), 148.09(\mathrm{CH}), 152.04$ (quat.) and 152.83 (quat.) ppm, $m / z 348\left(\mathrm{M}^{+}\right), 331\left(M-\mathrm{NH}_{3}\right), 316,305$, 263, 227, 212 (100%), 201, 184, 168, 157, 143, 132, 122, 105, 92 and 78 amu . HRMS: $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4}(\mathrm{M})$; found: $m / z 348.2318$. Calc. $m / z 348.2314$.
(+)-[(1S,2S,5R)-2-Isopropyl-5-methylcyclohexyl] 2'-pyridyl ketone $\mathbf{5 b}$. Obtained as an oil by careful column chromatography of a small portion of the crude reaction mixture obtained from pyridine-2-carbaldehyde as described above. It had bp $165{ }^{\circ} \mathrm{C} / 0.6 \mathrm{mmHg} ;[a]_{\mathrm{D}}+12.75$ (c 1.96 in CHCl_{3}); $v_{\text {max }}($ L) $3053,2949,2867,2843,1689,1583,1569,1472,1456$, 1434, 1386, 1368, 1339, 1298, 1274, 1260, 1226, 1195, 1169 , 1148, 1123, 1088, 1045, 1025, 1017, 994, 982, 945, 928, 900, 884 , $858,826,813,778,760,743,709,668$ and $618 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.76$ ($6 \mathrm{H}, \mathrm{d}, J 6.5$), 0.89 ($3 \mathrm{H}, \mathrm{d}, J 6.6$), $0.82-0.97(1 \mathrm{H}, \mathrm{m}), 1.08-1.20$ $(1 \mathrm{H}, \mathrm{m}), 1.25-1.50(2 \mathrm{H}, \mathrm{ms}), 1.60(1 \mathrm{H}, \mathrm{m},-\mathrm{CHMe}), 1.72-2.04$ (4 H , overlapping ms), $4.59\left(1 \mathrm{H}, \mathrm{m}, W_{1 / 2} 11.4 \mathrm{~Hz},-\mathrm{CHC}=\mathrm{O}\right)$, $7.42\left(1 \mathrm{H}\right.$, ddd, $J 7.6,4.8$ and $\left.1.3, H-5^{\prime}\right), 7.81(1 \mathrm{H}, \mathrm{dt}, J 7.7$ and $\left.1.7, H-4^{\prime}\right), 7.99\left(1 \mathrm{H}, \mathrm{d}, J 7.9, H-3^{\prime}\right)$ and $8.65\left(1 \mathrm{H}, \mathrm{d}, J 4.0, H-6^{\prime}\right)$ $\mathrm{ppm} ; \delta_{\mathrm{C}} 21.56\left(2 \times \mathrm{CH}_{3}\right), 22.28\left(\mathrm{CH}_{3}\right), 26.34\left(\mathrm{CH}_{2}\right), 27.12(\mathrm{CH})$, $30.07(\mathrm{CH}), 35.46\left(\mathrm{CH}_{2}\right), 37.37\left(\mathrm{CH}_{2}\right), 40.51(\mathrm{CHC=O}), 46.86$ $(\mathrm{CH}), 122.04(\mathrm{CH}), 126.6(\mathrm{CH}), 136.9(\mathrm{CH}), 148.8(\mathrm{CH}), 153.7$ (quat) and 204.4 (C=O) ppm. HRMS (EI) m/z 245.11774. Calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO} 245.1779$.

Oxidation of (-)-(S)-[(1'R,2'S,5'R)-2'-isopropyl-5'-methyl-cyclohexyl](2%22-pyridyl)methanol 2b to (-)-[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] 2^{\prime}-pyridyl ketone 5 a
The alcohol $\mathbf{2 b}(40 \mathrm{mg})$ was dissolved in ether $\left(1 \mathrm{~cm}^{3}\right)$ and stirred with a solution of sodium dichromate dihydrate (28 mg) and sulfuric acid ($0.2 \mathrm{~cm}^{3}$) in water $0.4 \mathrm{~cm}^{3}$) until oxidation was complete. The reaction mixture was diluted with further ether, washed sequentially with water and with sodium hydrogen carbonate solution, dried and evaporated to give the ketone 5a ($32 \mathrm{mg} ; 81 \%$), identical in every respect with material isolated as described above.

Oxidation of (+)-((S)-[($\left.1^{\prime} S, 2^{\prime} S, 5^{\prime} R\right)-2^{\prime}$-isopropyl-5'-methylcyclohexyl]($2^{\prime \prime}$-pyridyl)methanol 2d to (+)-[(1S,2S,5R)-2-isopropyl-5-methylcyclohexyl] 2'-pyridyl ketone $\mathbf{5 b}$

The alcohol $2(30 \mathrm{mg})$ was dissolved in ether $\left(1 \mathrm{~cm}^{3}\right)$ and stirred with a solution of sodium dichromate dihydrate (21 mg) and sulfuric acid ($0.15 \mathrm{~cm}^{3}$) in water $0.3 \mathrm{~cm}^{3}$) until oxidation was complete. The reaction mixture was diluted with further ether, washed sequentially with water and with sodium hydrogen carbonate solution, dried and evaporated to give the ketone $\mathbf{5 b}$ ($23 \mathrm{mg} ; 77 \%$), identical in every respect with material isolated as described above.

Reduction of [(1R,2S,5R)-2-isopropyl-5-methylcyclohexyl] 2'pyridyl ketone 5 a by lithium tri-tert-butoxyaluminium hydride

The pure ketone $5 \mathrm{a}(1.17 \mathrm{~g})$ was dissolved, under nitrogen, in anhydrous tetrahydrofuran $\left(12.5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$. Lithium tri-tert-
butoxyaluminium hydride (1.45 g) was added to the stirred solution, the ice-bath was removed, and the mixture was stirred for 16 h . It was then diluted with water and extracted with ether to give a mixture of the alcohols $\mathbf{2 a}$ and $\mathbf{2 b}(1.08 \mathrm{~g})$ in the ratio (${ }^{1} \mathrm{H}$ NMR) $14: 1$ as judged by integration of their -CHOH resonances.

(-)-(S)-[(1'R,2'S,5'R)-2'-Isopropyl-5'-methylcyclohexyl]($2^{\prime \prime}$-pyridyl)methanol 2b via Mitsunobu inversion ${ }^{7}$ of $(-)-(R)$ [($\left.1^{\prime} R, 2^{\prime} S, 5^{\prime} R\right)$-2'-isopropyl-5'-methylcyclohexyl]($2^{\prime \prime}$-pyridyl)methanol 2a

The alcohol 2a (100 mg), triphenylphosphine (410 mg) and 4-nitrobenzoic acid (270 mg) in dry THF ($7.5 \mathrm{~cm}^{3}$) were stirred together at $0{ }^{\circ} \mathrm{C}$ under nitrogen. Diethyl azidodicarboxylate $(278 \mathrm{mg})$ was added dropwise, and the reaction mixture was then stirred at room temperature during 12 h followed by 3 h at $40^{\circ} \mathrm{C}$. The mixture was cooled, diluted with ether and washed with sodium hydrogen carbonate solution. Ether was removed under reduced pressure and the ester 7 was purified by chromatography over silica gel using ethyl acetate-hexane 10:90 as eluant from which it was obtained as an oil ($120 \mathrm{mg} ; 75 \%$) which had $v_{\text {max }}$ (L) 2923, 1732, 1609, 1591, 1573, 1531, 1470, 1436, 1410, 1388, 1348, 1266, 1171, 1148, 1102, 1016, 999, 976, $873,854,833,802,784,761,720$ and $665 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400 \mathrm{MHz})$ $0.77(3 \mathrm{H}, \mathrm{d}, J 6.4), 0.82(3 \mathrm{H}, \mathrm{d}, J 6.8), 0.89(3 \mathrm{H}, \mathrm{d}, J 6.8), 1.04$ $(2 \mathrm{H}, \mathrm{m}), 1.17(2 \mathrm{H}, \mathrm{m}), 1.27(2 \mathrm{H}, \mathrm{m}), 1.66(2 \mathrm{H}, \mathrm{m}), 2.07(2 \mathrm{H}, \mathrm{m})$, $6.30(1 \mathrm{H}, \mathrm{s},-\mathrm{CHOCOAr}), 7.11(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2-p y$ and $\mathrm{H}-5-p y)$, $7.55(1 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{H}-4-p y), 8.25(4 \mathrm{H}, \mathrm{m}, A r-\mathrm{H})$ and $8.52(1 \mathrm{H}, \mathrm{d}$, J 3.3, H-6-py ppm; $\delta_{\mathrm{C}} 15.45\left(\mathrm{CH}_{3}\right), 21.38\left(\mathrm{CH}_{3}\right), 22.56$ $\left(\mathrm{CH}_{3}\right), 24.19\left(\mathrm{CH}_{2}\right), 26.55(\mathrm{CH}), 32.55(\mathrm{CH}), 34.53\left(\mathrm{CH}_{2}\right), 35.04$ $\left(\mathrm{CH}_{2}\right), 43.53(\mathrm{CH}), 43.70(\mathrm{CH}), 76.75(\mathrm{CH}), 119.78(p y-\mathrm{CH})$, 121.97 ($p y-\mathrm{CH}$), $123.62(A r-\mathrm{CH}), 130.73$ ($\mathrm{Ar}-\mathrm{CH}$), $135(\mathrm{Ar}-\mathrm{C})$, $136.06(p y-\mathrm{CH}), 149.28(p y-\mathrm{CH}), 150(A r-\mathrm{C}), 158.9(p y-\mathrm{C})$ and 164 (C=O) ppm. HRMS (EI) m/z 396.2048. Calculated for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{4} 396.2049$.

This ester $7(120 \mathrm{mg})$ was refluxed during 4 h with aqueous sodium hydroxide solution $\left(10 \% ; 5 \mathrm{~cm}^{3}\right)$. The mixture was then cooled and extracted with ether. The ether extract was dried and evaporated to give the alcohol $\mathbf{2 b}$ (65 mg ; 92%), identical in every respect with material obtained as described above.

(+)-(R)-[($\left.\mathbf{1}^{\prime} R, 2^{\prime} S, 5^{\prime} R\right)-2^{\prime}$-Isopropyl-5'-methylcyclohexyl]($2^{\prime \prime}$-pyridyl)methyl methyl ether 6

The alcohol 2a (1.04 g) was dissolved in DMSO $\left(10 \mathrm{~cm}^{3}\right)$. Sodium hydride (60% dispersion in oil; 0.25 g) was added. After evolution of hydrogen had ceased, iodomethane (0.9 g) was added and the mixture was stirred at rt during 13 h . Excess sodium hydride was quenched using ethanol, and the mixture was diluted with water and extracted with ether to give a brown semi-crystalline mass (1.3 g). TLC indicated that a single product had been formed, and chromatography over silica gel using 1% ether : 99% hexane afforded the pure ether $\mathbf{6}$ as plates, $\mathrm{mp} 77^{\circ} \mathrm{C}$ (pentane) which had $[a]_{\mathrm{D}}+50.78\left(c 0.128\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ or $[a]_{\mathrm{D}}+40.17$ (c 1.17 in EtOH]; $v_{\text {max }}$ (N) 3052, 2955, 2859, $2825,1589,1571,1460,1433,1377,1364,1351,1345,1260$, 1197, 1178, 1151, 1109, 1086, 1048, 1022, 994, 975, 930, 917, $873,854,811,782,756,720$ and $685 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.3-0.7(2 \mathrm{H}, \mathrm{ms})$, $0.78(3 \mathrm{H}, \mathrm{d}, J 6.9), 0.79(3 \mathrm{H}, \mathrm{d}, J 6.6), 0.87(3 \mathrm{H}, \mathrm{d}, J 6.9), 0.9-$ $1.05(1 \mathrm{H}, \mathrm{m}), 1.22-1.38(1 \mathrm{H}, \mathrm{m}), 1.55-1.68(2 \mathrm{H}, \mathrm{m}), 1.77-1.84$ $(1 \mathrm{H}, \mathrm{m}), 1.87-1.97(1 \mathrm{H}, \mathrm{m}), 2.50-2.59(1 \mathrm{H}, \mathrm{d}$ of septets, $J 6.9$ and $3.0,-\mathrm{CHMe}_{2}$), $3.28\left(3 \mathrm{H}, \mathrm{s},-\mathrm{OCH}_{3}\right), 4.54(1 \mathrm{H}, \mathrm{d}, J 4.0$, $\left.-\mathrm{C} H\left(\mathrm{OCH}_{3}\right)\right), 7.15\left(1 \mathrm{H}\right.$, ddd, $J 8.6,4.8$ and $\left.1.2, H-5^{\prime}\right), 7.34(1 \mathrm{H}$, d, $\left.J 7.9, H-3^{\prime}\right), 7.66\left(1 \mathrm{H}, \mathrm{dt}, J 7.8,7.8\right.$ and 1.7, $\left.H-4^{\prime}\right)$ and 8.53 $\left(1 \mathrm{H}\right.$, ddd, $J 4.8,1.9$ and 1.0, $\left.H-6^{\prime}\right) \mathrm{ppm}$; $\delta_{\mathrm{C}} 15.09\left(\mathrm{CH}_{3}\right), 21.43$ $\left(\mathrm{CH}_{3}\right), 22.68\left(\mathrm{CH}_{3}\right), 24.11\left(\mathrm{CH}_{2}\right), 26.56(\mathrm{CH}), 32.57(\mathrm{CH}), 34.90$ $\left(\mathrm{CH}_{2}\right), 35.76\left(\mathrm{CH}_{2}\right), 43.61(\mathrm{CH}), 44.59(\mathrm{CH})$, $57.32\left(-\mathrm{OCH}_{3}\right)$, $85.07\left(-\mathrm{CHOCH}_{3}\right), 121.8(2 \times \mathrm{CH}), 135.6(\mathrm{CH}), 148.5(\mathrm{CH})$ and 160.3 (quat) ppm. HRMS (EI) m / z 261.2087. Calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO} 261.2093$.

Barbier reaction of menthyllithium with pyridine-2-carbaldehyde

A mixture of menthyl chloride $3(8.7 \mathrm{~g})$ and pyridine-2carbaldehyde (5.4 g) was slowly added to a stirred suspension of small pieces of lithium (1.4 g) in dry THF $\left(200 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen. A dark red colour slowly developed. After a further 4 h the mixture was decanted from the remaining lithium into dilute sulfuric acid. The mixture was neutralised using sodium carbonate and extracted with ethyl acetate. Evaporation yielded a dark red oil (10.2 g) which was further processed as described above for the Grignard reaction between menthylmagnesium chloride and pyridine-2-carbaldehyde to give a mixture of the alcohols 2a-2d (ca.3g).

Reaction of menthylmagnesium chloride with carbon dioxide:

 (-)-($1 R, 3 R, 4 S$)-4-isopropyl-1-methylcyclohexane-3-carboxylic acid 9A solution of menthylmagnesium chloride (0.65 M in THF; $5 \mathrm{~cm}^{3}$) was added with swirling to excess powdered carbon dioxide (4 g). The resulting mixture was poured on to ice to which concentrated hydrochloric acid ($2 \mathrm{~cm}^{3}$) had been added, and extracted with ether. The ethereal extract was washed with water and then with sodium hydroxide solution. The alkaline aqueous layer was acidified using hydrochloric acid and extracted with ether. The ether extract was dried and evaporated to give the crude acid 9 as colourless needles ($0.52 \mathrm{~g} ; 88 \%$), $\mathrm{mp} 56-57^{\circ} \mathrm{C}$ (lit. ${ }^{9} \mathrm{mp} 60-63^{\circ} \mathrm{C}$ for the pure compound); $[a]_{\mathrm{D}}$ -50.7 (c 2.13 in CHCl_{3}) $\left\{\mathrm{lit} .{ }^{9}[a]_{\mathrm{D}}-56.1\right.$ (c 5.2 in EtOH$\left.)\right\}$; $v_{\text {max }}(\mathrm{N}) 3100,2974,2650,1702,1458,1420,1388,1371,1340$, $1295,1242,1226,1206,1139,1086,1056,1006,963,879$ and $700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 0.80(3 \mathrm{H}, \mathrm{d}, J 6.8), 0.90(3 \mathrm{H}, \mathrm{d}, J 6.4), 0.91(3 \mathrm{H}, \mathrm{d}$, $J 6.8), 0.9-1.1(2 \mathrm{H}$, overlapping ms), $1.21(1 \mathrm{H}, \mathrm{m}), 1.35(1 \mathrm{H}, \mathrm{m}$, $-\mathrm{CH} \mathrm{Me}_{2}$), $1.50(1 \mathrm{H}, \mathrm{tt}), 1.64-1.78(3 \mathrm{H}$, overlapping ms), 1.91 $(1 \mathrm{H}, \mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{dt}, J 11.5,11.5$ and $3.3, H-3)$ and $10.52(1 \mathrm{H}$, br s, exch. $\left.\mathrm{D}_{2} \mathrm{O},-\mathrm{OH}\right) \mathrm{ppm} ; \delta_{\mathrm{C}} 15.91\left(\mathrm{CH}_{3}\right), 21.24\left(\mathrm{CH}_{3}\right), 22.24$ $\left(\mathrm{CH}_{3}\right), 23.65\left(\mathrm{CH}_{2}\right), 29.10(\mathrm{CH}), 31.97(\mathrm{CH}), 34.45\left(\mathrm{CH}_{2}\right), 38.72$ $\left(\mathrm{CH}_{2}\right), 44.15(\mathrm{CH}), 47.62(\mathrm{CH})$ and $183.21\left(\mathrm{CO}_{2} \mathrm{H}\right) \mathrm{ppm}$.

Enantioselective addition of diethylzinc to benzaldehyde catalysed by alcohols 2a-2d

The general procedure described by Bolm ${ }^{3 d}$ was applied. The following paragraph gives details of a representative experiment. One of the alcohols $\mathbf{2 a}-\mathbf{2 d}(24.7 \mathrm{mg} ; 5 \mathrm{~mol} \%$) was dissolved in dry toluene $\left(4 \mathrm{~cm}^{3}\right)$ under a nitrogen atmosphere. This solution was cooled in an ice-bath and benzaldehyde (212 mg) was added. A solution of diethylzinc in hexane ($1 \mathrm{M} ; 4 \mathrm{~cm}^{3}$, 2 eq.) was then added dropwise during 5 min . The resulting pale yellow solution was stirred at $0^{\circ} \mathrm{C}$ during 3 h and then at room temperature during a further 20 h . The then colourless reaction mixture was quenched by the slow addition of dilute hydrochloric acid, neutralised using solid sodium carbonate, and extracted with ether. The ethereal extract was washed with brine, dried over anhydrous sodium carbonate, and evaporated to give a crude product that was separated from any
unreacted benzaldehyde and from recovered catalyst by column chromatography. The purities of the samples of $(+)-(R)-1-$ phenylpropanol 14 which were thus obtained were validated by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and ee values were determined by polarimetry for chloroform solutions with reference to the literature ${ }^{16}$ value of $[a]_{\mathrm{D}}=+45.45$ ($c 5.15$ in CHCl_{3}) for material of 100% ee.

Acknowledgements

We gratefully acknowledge Dr John O'Brien's skill in providing NMR spectra, the V. K. Krieble Fund for financial support to E. T. G. and to C. B. S., EOLAS for a research award to E. T. G., the Trinity Trust for financial support to E. T. G. and Foran Chemicals Ltd. for a gift of (-)-menthol.

References

1 J. M. Hawkins and K. B. Sharpless, Tetrahedron Lett., 1987, 28, 2835.

2 (a) C. Bolm and M. Ewald, Tetrahedron Lett., 1990, 31, 5011; (b) C. Bolm, Tetrahedron: Asymmetry, 1991, 2, 701; (c) C. Bolm, M. Ewald and M. Felder, Chem. Ber., 1992, 125, 1205.

3 (a) M. Ishizaki, K. Fujita, M. Shimamoto and O. Hoshino, Tetrahedron: Asymmetry, 1994, 5, 411; (b) M. Ishizaki and O. Hoshino, Tetrahedron: Asymmetry, 1994, 5, 1901; (c) M. Ishizaki and O. Hoshino, Chem. Lett., 1994, 1357; (d) C. Bolm, H. Schlingoff and K. Harms, Chem. Ber., 1992, 125, 1191; (e) G. Chelucci and F. Soccolini, Tetrahedron: Asymmetry, 1992, 3, 1235.

4 (a) M. Kitamura, S. Suga, M. Niwa and R. Noyori, J. Am. Chem. Soc., 1995, 117, 4832 and references therein; (b) T. Shibata, H. Morioka, T. Hayase, K. Choji and K. Soai, J. Am. Chem. Soc., 1996, 118, 471; (c) C. Girard and H. Kagan, Angew. Chem., Int. Ed., 1998, 37, 2922.
5 (a) T. Shono, N. Kise, T. Fujimoto, A. Yamanami and R. Nomura, J. Org. Chem., 1994, 59, 1730; (b) M. Genov, V. Dimitrov and V. Ivanova, Tetrahedron: Asymmetry, 1997, 8, 3703; (c) for a review of menthyl-based chiral auxiliaries see J. K. Whitesell, Chem. Rev., 1992, 92, 953.
6 W. Huckel and H. Pietrzok, Justus Liebigs Ann. Chem., 1939, 540, 250.

7 J. A. Dodge, J. S. Nissen and M. Presnell, Org. Synth., 1996, 73, 110.

8 H. Adolfsson, K. Nordstrom, K. Warnmark and C. Moberg, Tetrahedron: Asymmetry, 1996, 7, 1967.
9 D. G. Rowsell, BP 1392 907/1975 (Chem. Abstr., 1975, 83, 114682t).
10 The ratio of menthyl and neomenthyl carboxylic acids which are obtained via the carbonation of menthyllithium is both temperature- and solvent-dependent: W. H. Glaze and C. M. Selman, J. Org. Chem., 1968, 33, 1987.
11 (a) J. C. de Souza-Barboza, C. Petrier and J-L. Luche, J. Org. Chem., 1988, 53, 1212; (b) P. J. Pearce, D. H. Richards and N. F. Scully, J. Chem. Soc., Perkin Trans. 1, 1972, 1655.

12 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
13 G. M. Sheldrick, SHELXL-93, A computer program for crystal structure determination, University of Gottingen, 1993.
14 E. Keller, University of Freiburg, Germany.
15 P. McArdle, J. Appl. Crystallogr., 1995, 28, 65.
16 R. H. Pickard and J. Kenyon, J. Chem. Soc., 1914, 1115.

[^0]: \dagger To receive any correspondence regarding the X-ray crystallographic structure of $\mathbf{6}$

